Diastereoselective Synthesis of Substituted Tetrahydrothiopyrans via (3,5)-Thionium–Ene Cyclization Reaction

Somasekhar Bondalapati, Paramartha Gogoi, Kiran Indukuri, and Anil K. Saikia*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India

Supporting Information

ABSTRACT: Tetrahydrothiopyrans have been efficiently synthesized in good yields with excellent diastereoselectivity from aldehydes and substituted 5-methylhex-4-ene-1-thiol via (3,5)-thionium—ene cyclization reaction mediated by boron trifluoride etherate.

etrahydrothiopyrans, analogues of tetrahydropyrans, are important structural units in biologically active molecules.¹ Some tetrahydrothiopyrans are found in petroleum products.² The sulfur analogues of oligosaccharides are found to be potential enzyme inhibitors.³ Apart from these, the tetrahydrothiopyrans can be transformed into a variety of structures.⁴ Although there are many procedures for the synthesis of tetrahydropyrans,⁵ the methods for the synthesis of tetrahydrothiopyrans are limited. Tetrahydrothiopyrans are prepared by Prins cyclization,⁶ intramolecular ring-opening of epoxides by thiolates,⁷ double-conjugate addition of sulfide to divinyl ketone,⁸ hydrothiolation of nonactivated olefins,⁹ and Pummerer rearrangement,¹⁰ but the existing methods are associated with major drawbacks such as a lack of diastereoselectivity and use of expensive reagents. Therefore, to improve upon these limitations it is important to develop an efficient method for the synthesis of tetrahydrothiopyrans. Herein, we report the synthesis of substituted tetrahydrothiopyrans via thionium-ene cyclization.

Oxonium–ene cyclization reactions have been intensively studied in the recent past. They have been considered as powerful tools for the construction of various cyclic ethers.¹¹ In continuation of our interest in heterocyclic chemistry,¹² we were in search of an efficient method for the synthesis of tetrahydrothiopyrans. To the best of our knowledge, thionium–ene cyclization reaction has not been used for the synthesis of tetrahydrothiopyrans. We envisioned that reaction of olefinic compounds with a thiol group at the γ -position with aldehyde would generate thionium ion which after the thionium–ene reaction will provide tetrahydrothiopyrans. Thus, the reaction of 6-methylhept-5-ene-2-thiol with benzaldehyde 1a in the presence of boron trifluoride etherate in toluene afforded 3-isopropenyl-6-methyl-2-phenyltetrahydrothiopyran 3a in 86% yield with good diastereoselectivity.

To prove the reaction's general applicability, a variety of alkyl and aryl aldehydes were investigated, and the results are summarized in Table 1. It was observed that the reaction holds good for both electron-withdrawing as well as electrondonating groups on the aromatic ring of the aromatic aldehydes. The reaction is diastereoselective as determined from the ¹H and ¹³C NMR spectrum of the crude product, and in all cases, the substituents at 2 and 3 are trans, whereas substituents at 2 and 6 are in the cis position. The structure of the compounds was determined by ¹H NMR and NOE experiments (Figure 1). The strong NOE between H-2 and H-6 protons of 3b indicates that they are in the *cis* position. The coupling constant between H-2 and H-3 was found to be 11.2 Hz, which indicates that protons H-2 and H-3 are trans, and therefore, the propenyl group and aryl groups are in the transposition. Finally, the structure of 3b was confirmed by X-ray crystallographic analysis. It was observed that the aromatic aldehydes having electron-withdrawing groups gave better yields compared to aromatic aldehydes having electrondonating groups. This might be due to the increase in electrophilicity of the thiocarbenium ion (species 8, Scheme 1), caused by the electron-withdrawing character of the aryl

Received: November 22, 2011 Published: February 8, 2012

Table 1. Synthesis of Tetrahydrothiopyrans

 $^{\prime\prime}$ Yields refer to isolated yields. Compounds are characterized by 1 H, 13 C NMR, IR, and mass spectroscopy.

Figure 1. NOE of compound 3b.

Scheme 1. Mechanism for the Formation of Tetrahydrothiopyrans

ring, which in turn is attacked by the double bond effectively. On the other hand, the electron-donating groups on the aromatic ring decreases the electrophilicity of the thiocarbenium ion. Further, the reaction with aliphatic aldehydes also gave good yields. Electron-rich aromatic aldehyde 3,4,5-trimethoxybenzaldehyde (entry g and p) gave tricyclic compounds **3g** and **3p**, whereas phenylacetaldehyde (entry j and m) resulted benzothiochromenes **3j** and **3m**. It is evident from the above two results that the reaction proceeds through a stepwise manner via carbocation intermediate but not in a concerted fashion. The structure of **3m** was confirmed by X-ray crystallographic analysis.¹³ The reaction is very fast and within 30 min all the starting materials are consumed to give the products. This may be attributed to the extra stability imparted by the sulfur d-orbital.

The mechanism of the reaction can be explained as follows. Lewis acid activates the carbonyl group of aldehyde 1 to facilitate the nucleophilic attack by thiol 2 to give the acetal 7, which after decomposition forms thionium ion 8. The thionium ion 8 after cyclization provides carbocation 9, which after elimination of proton gives tetrahydrothiopyrans 3 (Scheme 1).

CONCLUSION

In summary, we have developed a simple and efficient methodology for the synthesis of tetrahydrothiopyrans in good yields. The reaction is diastereoselective and gave only one isomer.

EXPERIMENTAL SECTION

General Information. All reagents are commercially obtained. BF₃·Et₂O was distilled over CaH₂ prior to use. ¹H NMR spectra were recorded in CDCl₃ on 400 MHz NMR spectrometer using TMS as internal standard. The ¹³C and ¹⁹F NMR spectra were recorded at 100 and 376 MHz, respectively. For ¹³C and ¹⁹F NMR CDCl₃ and C₆F₆ were used as internal standard. IR spectra were recorded on FT-IR spectrometer. Melting points were measured in open capillary tubes and are uncorrected.

Synthesis of 6-Methylhept-5-ene-2-thiol and 5-Methyl-1-phenylhex-4-ene-1-thiol (2a-c). The thiols 2a-c were synthesized

The Journal of Organic Chemistry

as per literature procedure.¹⁴ The compound 2a is known, and the analyses were consistent with the literature.¹⁴

5-Methyl-1-phenylhex-4-ene-1-thiol (**2b**): 124 mg, 60%; pale yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 1.53 (s, 3 H), 1.68 (s, 3 H), 1.90 (d, J = 5.2 Hz, 1 H), 1.93–2.05 (m, 4 H), 3.97 (dt, J = 7.2 and 5.2 Hz, 1 H), 5.07 (t, J = 6.8 Hz, 1 H), 7.20–7.25 (m, 2 H), 7.29–7.35 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 17.9, 25.9, 26.4, 39.8, 43.6, 123.2, 127.0, 127.2, 128.7, 132.6, 144.8; IR (KBr, neat) 3027, 2929, 1601, 1493, 1453, 1252, 1167, 1072, 758 cm⁻¹; HRMS (APCI) calcd for C₁₃H₁₈S (M + H)⁺ requires 207.1202, found 207.1202.

5-Methylhex-4-ene-1-thiol (2c): 90 mg, 68%; pale yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, J = 7.2 Hz, 1 H), 1.62 (s, 3 H), 1.64 (t, J = 7.2 Hz, 2 H), 1.69 (s, 3 H), 2.06–2.11 (m, 2 H), 2.52 (q, J = 7.2, 2 H), 5.08 (t, J = 7.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 17.9, 24.3, 25.9, 26.8, 34.3, 123.4, 132.5; IR (KBr, neat) 2924, 2853, 1646, 1458, 1377, 1267, 1152, 748 cm⁻¹; HRMS (APCI) calcd for C₇H₁₄S (M + H)⁺ requires 131.0889, found 131.0891.

Typical Procedure for the Synthesis of 3-Isopropenyl-6methyl-2-phenyltetrahydrothiopyran (3a, Table 1). 6-Methylhept-5-ene-2-thiol (86 mg, 0.6 mmol) in 2 mL of toluene was added dropwise to a stirring mixture of benzaldehyde (53 mg, 0.5 mmol), boron trifluoride etherate (63 μ L, 0.5 mmol), and toluene (2 mL) at 0 °C. The stirring was continued at the same temperature for 30 min, and then the mixture was poured into saturated NaHCO₃ (5 mL). The reaction mixture was extracted with ethyl acetate and then washed with brine and water. The organic layers were collected, dried over Na₂SO₄, filtered, and concentrated. Then the resultant crude residue was purified by column chromatography over silica gel (petroleum ether/ EtOAc 98:2) to give 3-isopropenyl-6-methyl-2-phenyltetrahydrothiopyran 3a (100 mg, 86%) as a pale yellow liquid: ¹H NMR (400 MHz, $CDCl_3$) δ 1.20 (d, J = 6.8 Hz, 3 H), 1.49 (s, 3 H), 1.55–1.60 (m, 2 H), 1.91–2.00 (m, 1 H), 2.10 (dt, J = 10.4 and 2.8 Hz, 1 H), 2.63 (dt, J = 14.0 and 2.8 Hz, 1 H), 2.97-3.06 (m, 1 H), 3.90 (d, J = 10.8 Hz, 1 H), 4.56 (t, J = 1.2 Hz, 1 H), 4.59 (s, 1 H), 7.17–7.22 (m, 1 H), 7.23–7.28 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 21.2, 33.8, 37.2, 39.8, 51.0, 51.5, 112.3, 127.3, 128.3, 128.4, 140.8, 147.5; IR (KBr, neat) 2960, 2922, 1644, 1450, 1374, 1159, 1070, 888 cm⁻¹; HRMS (APCI) calcd for $C_{15}H_{20}S$ (M + H)⁺ requires 233.1358, found 233.1350.

Tetrahydro-6-methyl-2-phenyl-2-(3-nitrophenyl)(prop-1-en-2-yl)-2H-thiopyran (3b): pale yellow crystalline solid; mp 100–102 °C (125 mg, 90%); ¹H NMR (400 MHz, CDCl₃) δ 1.22 (d, *J* = 6.8 Hz, 3 H), 1.49 (s, 3 H), 1.52–1.65 (m, 2 H), 1.95–2.05 (m, 1 H), 2.09–2.19 (m, 1 H), 2.63 (dt, *J* = 10.4 and 2.8 Hz, 1 H), 2.97–3.06 (m, 1 H), 3.99 (d, *J* = 11.2 Hz, 1 H), 4.57–4.61 (m, 2 H), 7.44 (t, *J* = 8.0 Hz, 1 H), 7.61 (d, *J* = 7.6 Hz, 1 H), 8.07 (d, *J* = 7.2 Hz, 1 H), 8.16 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 21.1, 33.4, 37.0, 40.0, 50.1, 51.5, 113.1, 122.4, 123.4, 129.3, 134.6, 143.1, 146.6, 148.3; IR (KBr, neat) 2963, 2924, 1639, 1529, 1448, 1350, 1267, 1098, 891 cm⁻¹; HRMS (APCI) calcd for C₁₅H₁₉NO₂S (M + H)⁺ requires 278.1209, found 278.1223.

Methyl 4-(tetrahydro-6-methyl-3-(prop-1-en-2-yl)-2*H*-thiopyran-2-yl)benzoate (3c): pale yellow crystalline solid; mp 58–60 °C (138 mg, 95%); ¹H NMR (400 MHz, CDCl₃) δ 1.21 (d, *J* = 6.4 Hz, 3 H), 1.47 (s, 3 H), 1.53–1.64 (m, 2 H), 1.92–2.00 (m, 1 H), 2.07–2.17 (m, 1 H), 2.63 (dt, *J* = 14.0 and 2.8 Hz, 1 H), 2.98–3.06 (m, 1 H), 3.89 (s, 3 H), 3.96 (d, *J* = 10.8 Hz, 1 H), 4.54–4.58 (m, 2 H), 7.34 (d, *J* = 8.4 Hz, 2 H), 7.94 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 21.1, 33.6, 37.1, 39.9, 50.8, 51.5, 52.1, 112.6, 128.4, 129.1, 129.8, 146.1, 147.0, 167.0; IR (KBr, neat) 2954, 2923, 1722, 1610, 1435, 1375, 1279, 1112, 1019, 752 cm⁻¹; HRMS (APCI) calcd for C₁₇H₂₂O₂S (M + H)⁺ requires 291.1413, found 291.1406.

2-(4-Bromophenyl)tetrahydro-6-methyl-3-(prop-1-en-2-yl)-2H-thiopyran (3d): colorless liquid (146 mg, 94%); ¹H NMR (400 MHz, CDCl₃) δ 1.20 (d, J = 7.2 Hz, 3 H), 1.48 (s, 3 H), 1.50–1.60 (m, 2 H), 1.90–1.97 (m, 1 H), 2.08–2.12 (m, 1 H), 2.56 (dt, J = 11.2 and 2.8 Hz, 1 H), 2.96–3.05 (m, 1 H), 3.86 (d, J = 10.8 Hz, 1 H), 4.57–4.59 (m, 2 H), 7.15 (d, J = 8.4 Hz, 2 H), 7.38 (d, J = 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 21.1, 33.7, 37.1, 39.9, 50.3, 51.6, 112.6, 121.0, 130.0, 131.6, 139.9, 147.1; IR (KBr, neat) 2960, 2922, 1644, 1448, 1374, 1074, 1010, 890, 771 cm⁻¹; HRMS (APCI) calcd for $C_{15}H_{19}BrS$ (M + H)⁺ requires 311.0464, found 311.0464.

4-(Tetrahydro-6-methyl-3-(prop-1-en-2-yl)-2*H***-thiopyran-2yl)phenol (3e): brownish liquid (93 mg, 75%); ¹H NMR (400 MHz, CDCl₃) \delta 1.21 (d,** *J* **= 6.8 Hz, 3 H), 1.49 (s, 3 H), 1.53–1.59 (m, 2 H), 1.89–1.96 (m, 1 H), 2.06–2.11 (m, 1 H), 2.57 (dt,** *J* **= 11.2 and 2.8 Hz, 1 H), 2.97–3.05 (m, 1 H), 3.84 (d,** *J* **= 10.8 Hz, 1 H), 4.56–4.60 (m, 2 H), 6.71 (d,** *J* **= 8.4 Hz, 2 H), 7.13 (d,** *J* **= 8.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): \delta 20.3, 21.2, 33.8, 37.2, 40.1, 50.4, 51.7, 112.3, 115.5, 129.5, 132.7, 147.7, 154.9; IR (KBr, neat) 3453, 2956, 2867, 1637, 1467, 1335, 1114, 1028, 738 cm⁻¹; HRMS (APCI) calcd for C₁,H₂₀OS (M + H)⁺ requires 249.1308, found 249.1301.**

Tetrahydro-2-(4-methoxyphenyl)-6-methyl-3-(prop-1-en-2yl)-2H-thiopyran (3f): colorless oil (106 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 1.19 (d, J = 6.8 Hz, 3 H), 1.49 (s, 3 H), 1.51–1.59 (m, 2 H), 1.89–1.96 (m, 1 H), 2.04–2.11 (m, 1 H), 2.89 (dt, J = 10.8 and 2.8 Hz, 1 H), 2.97–3.05 (m, 1 H), 3.77 (s, 3 H), 3.87 (d, J = 10.8 Hz, 1 H), 4.57–4.60 (m, 2 H), 6.79 (d, J = 8.4 Hz, 2 H), 7.19 (d, J = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 21.2, 33.9, 37.2, 39.9, 50.2, 51.7, 55.2, 112.2, 113.8, 129.3, 132.9, 147.7, 158.7; IR (KBr, neat) 2922, 2836, 1644, 1450, 1301, 1247, 1176, 1037, 811 cm⁻¹; HRMS (APCI) calcd for C₁₆H₂₂OS (M + H)⁺ requires 263.1464, found 263.1469.

2,**3**,**4**,**4**,**5**,**9b**-Hexahydro-6,**7**,**8**-trimethoxy-2,**5**,**5**-trimethylindeno[1,2-*b*]thiopyran (3g): pale yellow liquid (97 mg, 60%); ¹H NMR (400 MHz, CDCl₃) δ 1.30 (d, J = 6.8 Hz, 3 H), 1.42 (s, 6 H), 1.45–1.56 (m, 2 H), 1.81–1.92 (m, 2 H), 2.16–2.21 (m, 1 H), 2.97–3.05 (m, 1 H), 3.83 (s, 3 H), 3.84 (s, 3 H), 3.89 (dd, J = 10.8 and 1.2 Hz, 1 H), 3.92 (s, 3 H), 6.51 (d, J = 1.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 21.5, 25.5, 26.4, 37.6, 39.9, 45.3, 50.1, 56.2, 60.4, 60.7, 60.9, 101.9, 135.6, 136.9, 141.7, 150.7, 153.1; IR (KBr, neat) 2960, 2923, 1639, 1448, 1374, 1261, 1172, 1034, 786 cm⁻¹; HRMS (APCI) calcd for C₁₈H₂₆O₃S (M + H)⁺ requires 323.1675, found 323.1687.

Tetrahydro-6-methyl-3-(prop-1-en-2-yl)-2-styryl-2H-thiopyr-an (3h): colorless liquid (119 mg, 92%); ¹H NMR (400 MHz, CDCl₃) δ 1.20 (d, *J* = 6.4 Hz, 3 H), 1.47 (ddd, *J* = 11.2, 10.8, and 10.0 Hz, 1 H), 1.55–1.67 (m, 1 H), 1.63 (s, 3 H), 1.83 (dt, *J* = 10.0 and 2.8 Hz, 1 H), 2.02–2.08 (m, 1 H), 2.27 (dt, *J* = 11.2 and 2.8 Hz, 1 H), 2.92–2.98 (m, 1 H), 3.57 (t, *J* = 10.0 Hz, 1 H), 4.70–4.80 (m, 2 H), 6.99 (dd, *J* = 15.6 and 8.8 Hz, 1 H), 6.51(d, *J* = 15.6 Hz, 1 H), 7.18–7.22 (m, 2 H), 7.25–7.33 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 19.7, 21.3, 32.9, 36.9, 38.7, 48.0, 52.2, 112.1, 126.5, 127.6, 128.6, 128.9, 132.0, 137.1, 147.9; IR (KBr, neat) 2960, 2922, 1644, 1448, 1374, 1159, 1028, 890 cm⁻¹; HRMS (APCI) calcd for C₁₇H₂₂S (M + H)⁺ requires 259.1515, found 259.1518.

2-Cyclohexyltetrahydro-6-methyl-3-(prop-1-en-2-yl)-2H-thiopyran (3i): pale yellow liquid (101 mg, 85%); ¹H NMR (400 MHz, CDCl₃): δ 1.10–1.26 (m, 2 H), 1.20 (d, *J* = 6.8 Hz, 3 H), 1.33–1.58 (m, 6 H), 1.63 (s, 3 H), 1.67–1.78 (m, 6 H), 1.94–2.00 (m, 1 H), 2.36 (dt, *J* = 11.2 and 2.8 Hz, 1 H), 2.75–2.81 (m, 2 H), 4.75 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 18.9, 21.8, 26.7 (2C), 26.9, 27.1, 32.4, 34.0, 37.3, 38.3, 39.4, 49.6, 52.3, 112.0, 148.3; IR (KBr, neat) 2923, 2852, 1639, 1448, 1371, 1267, 889 cm⁻¹; HRMS (APCI) calcd for C₁₅H₂₆S (M + H)⁺ requires 239.1828, found 239.1828.

3,*A*,**4**a,**5**,**10**,**10a**-**Hexahydro**-**2**,**5**,**5**-trimethyl-**2***H*-**benzo**[*g*]-thiochromene (3j): light yellow solid; mp 83–85 °C (80 mg, 65%); ¹H NMR (400 MHz, CDCl₃) δ 1.12 (s, 3 H), 1.20 (d, *J* = 6.4 Hz, 3 H), 1.37 (s, 3 H), 1.41–1.51 (m, 1 H), 1.55 (dt, *J* = 11.2 and 2.4 Hz, 1 H), 2.05–2.15 (m, 3 H), 2.76 (dd, *J* = 16.0 and 12.0 Hz, 1 H), 2.86–2.94 (m, 2 H), 3.18 (ddd, *J* = 11.6, 5.2, and 4.8 Hz, 1 H), 7.00 (d, *J* = 8.0, 1 H), 7.10 (t, *J* = 7.2, 1 H), 7.18 (t, *J* = 7.2, 1 H), 7.36 (d, *J* = 8.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 21.3, 21.4, 27.5, 27.9, 28.6, 36.9, 37.6, 38.0, 38.7, 48.5, 125.7, 126.5, 127.2, 128.4, 133.5, 146.1; IR (KBr, neat) 2962, 2884, 1633, 1491, 1447, 1364, 1291, 1174, 1034, 764, 730 cm⁻¹; HRMS (APCI) calcd for C₁₆H₂₂S (M + H)⁺ requires 247.1515, found 247.1526.

2-(2-Chlorophenyl)tetrahydro-6-phenyl-3-(prop-1-en-2-yl)-2-styryl-2H-thiopyran (3k): colorless oil (120 mg, 73%); ¹H NMR (400 MHz, CDCl₃): δ 1.59 (s, 3 H), 1.70–1.84 (m, 1 H), 2.10–2.23 (m, 2 H), 2.30–2.37 (m, 1 H), 2.83 (dt, *J* = 13.6 and 2.8 Hz, 1 H), 4.15 (dd, *J* = 11.6 and 2.4 Hz, 1 H), 4.60 (s, 1 H), 4.67 (s, 1 H), 4.69 (d, *J* = 12.0 Hz, 1 H), 7.10–7.15 (m, 1 H), 7.18–7.25 (m, 2 H), 7.28–7.32 (m, 3 H), 7.37–7.40 (m, 2 H), 7.45 (d, *J* = 8.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 20.3, 34.1, 35.8, 46.8, 49.5, 51.1, 112.5, 127.0, 127.5, 127.6, 128.4, 128.7, 129.4, 129.7, 133.8, 137.7, 141.5, 147.0; IR (KBr, neat) 2928, 2857, 1645, 1442, 1376, 888 cm⁻¹; HRMS (APCI) calcd for C₂₀H₂₁ClS (M + H)⁺ requires 329.1125, found 329.1134.

Tetrahydro-6-phenyl-3-(prop-1-en-2-yl)-2-propyl-2H-thiopyran (3l): brownish liquid (98 mg, 75%); ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.2 Hz, 3 H), 1.23–1.33 (m, 2 H), 1.54–1.67 (m, 2 H), 1.69 (s, 3 H), 1.88–1.96 (m, 2 H), 1.98–2.05 (m, 1 H), 2.16–2.26 (m, 2 H), 2.97 (dt, *J* = 10.0 and 2.8 Hz, 1 H), 3.89 (dd, *J* = 11.6 and 2.0 Hz, 1 H), 4.79 (brs, 2 H), 7.21–7.25 (m, 1 H), 7.28–7.33 (m, 2 H), 7.34–7.37 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 19.5, 19.8, 33.9, 35.4, 35.6, 46.5, 48.1, 52.4, 112.2, 127.5, 127.6, 128.7, 142.5, 148.1; IR (KBr, neat) 2957, 2927, 1634, 1452, 1376, 1186, 1076, 756 cm⁻¹; HRMS (APCI) calcd for C₁₇H₂₄S (M + H)⁺ requires 261.1671, found 261.1678.

3,4,4a,5,10,10a-Hexahydro-5,5-dimethyl-2-phenyl-2*H***-benzo[g]thiochromene (3m):** colorless solid; mp 113–115 °C (97 mg, 64%); ¹H NMR (400 MHz, CDCl₃) δ 1.17 (s, 3 H), 1.42 (s, 3 H), 1.43–1.51 (m, 1 H), 1.71 (dt, *J* = 11.6 and 3.2 Hz, 1 H), 2.07 (dq, *J* = 12.8 and 2.4 Hz, 1 H), 2.20–2.27 (m, 1 H), 2.31–2.37 (m, 1 H), 2.80 (dd, *J* = 16.0 and 11.6 Hz, 1 H), 2.93 (dd, *J* = 16.4 and 5.2 Hz, 1 H), 3.35 (ddd, *J* = 11.6, 5.6, and 5.2 Hz, 1 H), 3.99 (dd, *J* = 11.6 and 2.4 Hz, 1 H), 7.01 (d, *J* = 7.6, 1 H), 7.10 (t, *J* = 7.6, 1 H), 7.19 (t, *J* = 8.0, 1 H), 7.24–7.28 (m, 1 H), 7.33 (t, *J* = 7.2 Hz, 2 H), 7.38 (d, *J* = 7.6, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 27.6, 28.3, 28.6, 36.1, 36.6, 38.1, 39.9, 47.7, 48.5, 125.8, 126.5, 127.3, 127.6, 127.7, 128.4, 128.8, 133.5, 142.1, 146.1; IR (KBr, neat) 2965, 2926, 1634, 1446, 1365, 1188, 1080, 965 cm⁻¹; HRMS (APCI) calcd for C₂₁H₂₄S (M + H)⁺ requires 309.1671, found 309.1681.

Tetrahydro-6-phenyl-3-(prop-1-en-2-yl)-2-*p***-tolyl-2***H***-thiopyran (3n): brownish solid; mp 118–120 °C (120 mg, 78%); ¹H NMR (400 MHz, CDCl₃) \delta 1.54 (s, 3 H), 1.68–1.79 (m, 1 H), 2.00–2.15 (m, 2 H), 2.19 (dd,** *J* **= 12.4 and 2.8 Hz, 1 H), 2.29 (s, 3 H), 2.77 (dt,** *J* **= 11.2 and 2.8 Hz, 1 H), 4.06 (d,** *J* **= 12.4 Hz, 1 H), 4.10 (dd,** *J* **= 12.0 and 2.8 Hz, 1 H), 4.61 (s, 1 H), 4.66 (s, 1 H), 7.07 (d,** *J* **= 7.6 Hz, 2 H), 7.20 (d,** *J* **= 8.0 Hz, 2 H), 7.24 (d,** *J* **= 8.4 Hz, 1 H), 7.30 (d,** *J* **= 7.2 Hz, 2 H), 7.38 (d,** *J* **= 7.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) \delta 20.4, 21.3, 34.1, 35.5, 50.3, 51.4, 52.5, 112.5, 127.7 (2C), 128.3, 128.7, 129.2, 136.8, 137.1, 141.4, 147.3; IR (KBr, neat) 2926, 2855, 1643, 1452, 1375, 1282, 1030, 753 cm⁻¹; HRMS (APCI) calcd for C₂₁H₂₄S (M + H)⁺ requires 309.1671, found 309.1675.**

Tetrahydro-2-(2,3-dimethoxyphenyl)-6-phenyl-3-(prop-1-en-2-yl)-2H-thiopyran (30): yellow solid; mp 96–98 °C (133 mg, 72%); ¹H NMR (400 MHz, CDCl₃) δ 1.57 (s, 3 H), 1.70–1.80 (m, 2 H), 2.10–2.20 (m, 2 H), 2.28–2.40 (m, 1 H), 2.75 (dt, *J* = 11.6 and 2.8 Hz, 1 H), 3.83 (s, 3 H), 3.92 (s, 3 H), 4.14 (d, *J* = 11.6 Hz, 1 H), 4.56 (s, 1 H), 4.65 (s, 1 H), 4.72 (d, *J* = 11.2 Hz, 1 H), 6.74–6.78 (m, 1 H), 6.98–7.02 (m, 2 H), 7.22 (t, *J* = 6.8 Hz, 1 H), 7.30 (t, *J* = 7.2 Hz, 2 H), 7.39 (d, *J* = 7.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 20.2, 34.3, 36.1, 43.1, 49.6, 51.1, 55.8, 61.6, 111.0, 112.1, 120.6, 124.1, 127.5, 127.7, 128.7, 134.1, 142.0, 146.8, 147.6, 152.6; IR (KBr, neat) 2930, 2853, 1642, 1478, 1376, 1272, 1087, 1060, 1007, 888, 758 cm⁻¹; HRMS (APCI) calcd for C₂₂H₂₆O₂S (M + H)⁺ requires 355.1726, found 355.1733.

2,3,4,4a,5,9b-Hexahydro-6,7,8-trimethoxy-5,5-dimethy-2phenylindeno[1,2-*b***]thiopyran (3p): colorless solid; mp 108–110 °C; (150 mg, 78%); ¹H NMR (400 MHz, CDCl₃) \delta 1.06 (s, 3 H), 1.47 (s, 3 H), 1.99–2.14 (m, 4 H), 2.35–2.40 (m, 1 H), 3.79 (s, 3 H), 3.85 (s, 3 H), 3.93 (s, 3 H), 4.07 (dd,** *J* **= 11.6 and 3.6 Hz, 1 H), 4.09 (d,** *J* **= 10.6 Hz, 1 H), 6.52 (s, 1 H), 7.24–7.29 (m, 1 H), 7.32–7.36 (m, 2 H), 7.39–7.42 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) \delta 21.2, 25.8, 26.4, 36.3, 45.5, 49.6, 51.0, 56.2, 60.4, 60.8, 61.0, 101.9, 127.5 (2C), 128.7, 135.6, 136.7, 141.9, 142.2, 150.8, 153.2; IR (KBr, neat) 2932, 2866, 1602, 1470, 1410, 1335, 1113, 1096, 1027, 736, 699 cm⁻¹;** HRMS (APCI) calcd for $C_{23}H_{28}O_3S\ (M+H)^+$ requires 385.1832, found 385.1843.

2-(4-Fluorophenyl)tetrahydro-6-phenyl-3-(prop-1-en-2-yl)-2H-thiopyran (3q): brownish liquid (128 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 1.53 (s, 3 H), 1.73 (dq, J = 12.8 and 2.8 Hz, 1 H), 2.08–2.15 (m, 1 H), 2.19 (dd, J = 12.8 and 2.8 Hz, 1 H), 2.30 (dq, J = 13.2 and 2.7 Hz, 1 H), 2.72 (dt, J = 12.0 and 3.2 Hz, 1 H), 4.05 (d, J = 11.2 Hz, 1 H), 4.09 (dd, J = 11.6 and 2.0 Hz, 1 H), 4.62 (s, 1 H), 4.65 (s, 1 H), 6.95 (t, J = 8.8 Hz, 2 H), 7.23–7.33 (m, 5 H), 7.37 (d, J = 7.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 20.4, 34.1, 35.5, 49.7, 51.4, 51.8, 112.7, 115.3 (d, J = 21.3 Hz), 127.6 (2C), 128.8, 129.9 (d, J = 7.6 Hz), 136.2, 141.6, 147.3, 162.0 (d, J = 244.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃/C₆F₆) δ 46.58–46.63 (m, –F); IR (KBr, neat) 2927, 2851, 1639, 1451, 1375, 1222, 1157, 836, 755, 697 cm⁻¹; HRMS (APCI) calcd for C₂₀H₂₁FS (M + H)⁺ requires 313.1421, found 313.1434.

Tetrahydro-2-(4-nitrophenyl)-3-(prop-1-en-2-yl)-2H-thiopyr-an (3r): pale yellow liquid (120 mg, 91%); ¹H NMR (400 MHz, CDCl₃) δ 1.49 (s, 3 H), 1.56 (ddd, *J* = 13.2, 12.0, and 3.2 Hz, 1 H), 1.86 (qt, *J* = 13.2, and 3.2 Hz, 1 H), 1.98 (dd, *J* = 14.0, and 2.8 Hz, 1 H), 2.18 (dt, *J* = 14.0 and 2.8 Hz, 1 H), 2.65–2.72 (m, 2 H), 2.89 (ddd, *J* = 12.8, 10.8, and 2.8 Hz, 1 H), 3.93 (d, *J* = 10.8 Hz 1 H), 4.56 (s, 1 H), 4.58 (s, 1 H), 7.45 (d, *J* = 8.4 Hz, 2 H), 8.14 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 20.3, 28.0, 31.2, 33.0, 49.8, 52.1, 113.0, 123.7, 129.3, 146.8, 147.1, 148.7; IR (KBr, neat) 2928, 2852, 1644, 1598, 1520, 1346, 1287, 1110, 1074, 853, 738 cm⁻¹; HRMS (APCI) calcd for C₁₄H₁₇NO₂S (M + H)⁺ requires 264.1053, found 264.1066.

ASSOCIATED CONTENT

S Supporting Information

¹H and ¹³C NMR spectra of all compounds, ¹⁹F NMR spectra of **3e**, **4e**, and **8d**, and crystal parameters and ORTEP diagrams of compounds **3b** and **3i**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Fax: +91-361-2690762. E-mail: asaikia@iitg.ernet.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support (Grant No. 01(2332)/09/EMR-II). We gratefully acknowledge the X-ray facility provided by DST, under the Fist program.

REFERENCES

(1) (a) Woodward, R. B.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer, W.; Ramage, R.; Ranganathan, S.; Vorbrüggen, H. J. Am. Chem. Soc. **1966**, 88, 852–853. (b) Casy, G.; Lane, S.; Taylor, R. J. K. J. Chem. Soc., Perkin. Trans. 1 **1986**, 1397–1404. (c) Ohuchida, S.; Hamanaka, N.; Hayashi, M. Tetrahedron **1983**, 39, 4273–4278.

(2) (a) Gal'pern, G. D. Int. J. Sulfur Chem., B. 1971, 6, 115-130.
(b) Payzant, J. D.; Cyr, T. D.; Montgomery, D. S.; Strausz, O. P. Tetrahedron Lett. 1985, 26, 4175-4178.

(3) Mehta, S.; Andrews, J. S.; Johnston, B. D.; Svensson, B.; Pinto, B. M. J. Am. Chem. Soc. **1995**, 117, 9783–9790.

(4) (a) Block, E. Reactions of Organosulfur Compounds: Academic Press: New York, 1978. (b) Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B. W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H. J. Am. Chem. Soc. **1981**, 103, 3210–3213. (c) Almena, J.; Foubelo, F.; Yus, M. Tetrahedron **1997**, 53, 5563–5572. (d) Agarwal, V. K.; Smith, H. W.; Hynd, G.; Jones, R. V. H.; Fieldhouse, R.; Spey, S. E. J. Chem. Soc., Perkin Trans. 1 **2000**, 3267–3276.

The Journal of Organic Chemistry

(5) (a) Boger, D. L.; Weinerb, S. M. Hetero Diels--Alder Methodology in Organic Synthesis; Academic Press: San Diego, 1987. (b) Gademann, K.; Chavez, D. E.; Jacobson, E. N. Angew. Chem., Int. Ed. 2002, 41, 3059-3061. (c) Gouverneur, V.; Reiter, M. Chem.-Eur. J. 2005, 11, 58065815. (d) Gademann, K.; Chavez, D. E.; Jacobson, E. N. Angew. Chem., Int. Ed. 2005, 44, 3485-3488. (e) Desimoni, G.; Faita, G.; Toscanini, M.; Boiocchi, M. Chem.-Eur. J. 2007, 13, 9478-9485. (f) Paterson, I.; Steven, A.; Luckhurst, C. A. Org. Biomol. Chem. 2004, 2, 3026-3038. (g) Liu, P.; Jacobson, E. N. J. Am. Chem. Soc. 2001, 123, 10772-10773. (h) Voight, E. A.; Seradj, H.; Roethle, P. A.; Burke, S. D. Org. Lett. 2004, 6, 4045-4048. (i) Ruijter, E. R.; Schltingkemper, H.; Wessjohann, L. A. J. Org. Chem. 2005, 70, 2820-2823. (j) Clarke, P. A.; Santos, S.; Martin, W. H. C. Green. Chem. 2007, 9, 438-440. (k) Clarke, P. A.; Martin, W. H. C.; Hargreaves, M. J.; Wilson, C.; Blake, A. J. Org. Biomol. Chem. 2005, 3, 3551-3563. (1) Avery, T. D.; Caiazza, D.; Culbert, J. A.; Taylor, D. K.; Tiekink, R. T. J. Org. Chem. 2005, 70, 8344-8351. (m) Yadav, J. S.; Reddy, B. V. S.; Maity, T.; Kumar, G. G. K. S. Tetrahedron Lett. 2007, 48, 7155-7159. (n) Chan, K.-P.; Seow, A.-H.; Loh, T.-P. Tetrahedron Lett. 2007, 48, 37-41. (o) Yadav, J. S.; Reddy, B. V. S.; Kumar, G. G. K. S. N.; Swamy, T. Tetrahedron Lett. 2007, 48, 2205-2208.

(6) (a) Yang, X.-F.; Mague, J. T.; Li, C.-J. J. Org. Chem. 2001, 66, 739–747. (b) Yang, X.-F.; Li, C.-J. Tetrahedron Lett. 2000, 41, 1321–1325.

(7) Ozaki, S.; Matsui, E.; Yoshinaga, H.; Kitagawa, S. *Tetrahedron Lett.* **2000**, *41*, 2621–2624.

(8) Rosiak, A.; Frey, W.; Christoffers, J. Eur. J. Org. Chem. 2006, 4044-4054.

(9) (a) Weïwer, M.; Coulombel, L.; Duñach, E. Chem. Commun. 2006, 332–334. (b) Weïwer, M.; Chaminade, X.; Bayón, J. C.; Duñach, E. Eur. J. Org. Chem. 2007, 2464–2469.

(10) Tamura, Y.; Choi, H.-D.; Shindo, H.; Uenishi, J.; Ishibashi, H. Tetrahedron Lett. 1981, 22, 81–84.

(11) (a) Blumenkopf, T. A.; Look, G. C.; Overman, L. E. J. Am. Chem. Soc. 1990, 112, 4399-4403. (b) Overman, L. E. Acc. Chem. Res.
1992, 25, 352-359. (c) Overman, L. E.; Thompson, A. S. J. Am. Chem. Soc. 1988, 110, 2248-2256. (d) Sonawane, H. R.; Maji, D. K.; Jana, G. H.; Pandey, G. Chem. Commun. 1998, 1773-1774. (e) Sasmal, P. K.; Maier, M. E. J. Org. Chem. 2003, 68, 824-831. (f) Ohmura, H.; Smyth, G. D.; Mikami, K. J. Org. Chem. 1999, 64, 6056-6059. (g) Mikami, K.; Ohmura, H.; Yamanaka, M. J. Org. Chem. 2003, 68, 1081-1088.
(h) Ohmura, H.; Mikami, K. Tetrahedron Lett. 2001, 42, 6859-6863.
(i) Loh, T.-P.; Hu, Q.-Y.; Tan, K.-T.; Cheng, H.-S. Org. Lett. 2001, 3, 2669-2672. (j) Saha, P.; Reddy, U. C.; Bondalapati, S.; Saikia, A. K. Org. Lett. 2010, 12, 1824-1826. (k) Saha, P.; Gogoi, P.; Saikia, A. K. Org. Biomol. Chem. 2011, 9, 4626-4634. (l) Bondalapati, S.; Reddy, U. C.; Saha, P.; Saikia, A. K. Org. Biomol. Chem. 2011, 9, 3428-3438.

(12) (a) Reddy, U. C.; Raju, B. R.; Kumar, E. K. P.; Saikia, A. K. J. Org. Chem. 2008, 73, 1628–1630. (b) Reddy, U. C.; Bondalapati, S.; Saikia, A. K. Eur. J. Org. Chem. 2009, 1625–1629. (c) Reddy, U. C.; Bondalapati, S.; Saikia, A. K. J. Org. Chem. 2009, 74, 2605–2608. (d) Reddy, U. C.; Saikia, A. K. Synlett 2010, 1027–1032.

(13) The crystallographic data for compounds **3b** and **3m** have been deposited with the Cambridge Crystallographic Data Centre as Supplementary publication nos. CCDC 848785 and 848786.

(14) Stach, D.; Zheng, Y. F.; Perez, A. L.; Oehlschlager, A. C. J. Med. Chem. 1997, 40, 201–209.